<p id="lvxrx"></p>

<address id="lvxrx"></address>

    <noframes id="lvxrx"><listing id="lvxrx"><nobr id="lvxrx"></nobr></listing>
      <address id="lvxrx"></address>
          <address id="lvxrx"></address>

            <noframes id="lvxrx"><form id="lvxrx"></form>

          <address id="lvxrx"><listing id="lvxrx"><meter id="lvxrx"></meter></listing></address>

          Summary

          DNNs have shown remarkable success in many computer vision and machine learning tasks. Despite a wide range of impressive results, current DNN based methods typically depend on massive amounts of accurately annotated training data to achieve high performance. DNNs lack the ability of learning from limited exemplars and fast generalizing to new tasks. 

          The Visual Intelligence Group in School of Data Science, Fudan University will hold the 1st Visual Intelligence Seminar on Few-shot Learning on January 29, 2021. We invite several distinguished speakers to share the recent progress on few-shot learning. 

          Seminar Chair: Xiangyang Xue, Yanwei Fu (yanweifu@fudan.edu.cn)

          Online Link: https://live.bilibili.com/22761519

          Schedules

          8:00 -- 8:10, Opening.

          8:10 -- 9:10, Learning to Learn More with Less.

              Speaker: Yuxiong Wang. 

              Host: Yanwei Fu.

          9:10 -- 10:10: Meta-Learning: Representations and Objectives.

              Speaker: Timothy M. Hospedales. 

              Host: Yanwei Fu.

          10:10 -- 10:30, Break and Panel Discussion of Speakers in the Morning Session.


          10:30 -- 11:30, 自監督學習進展、有效性初探及展望.

              Speaker: Songcan Chen. 

              Host: Xiangyang Xue.

          11:30 -- 12:10, Towards Good Practices in Self-Supervised Representation Learning.

              Speaker: Yi Zhu. 

              Host: Li Zhang.


          13:30 -- 14:30, New Meta-Learning Paradigms for Few-Shot Learning.

              Speaker: Zhiwu Lu. 

              Host: Yanwei Fu.

          14:30 -- 15:10, Learning universal representation for scene understanding.

              Speaker: Li Zhang. 

              Host: Xiangyang Xue.

          15:10 -- 15:50, Unsupervised Learning of 3D Objects from Images.

              Speaker: Shangzhe Wu. 

              Host: Li Zhang.

          15:50 -- 16:30, Self-supervised Representation Learning from Videos.

              Speaker: Weidi Xie. 

              Host: Li Zhang.

          16:30 -- 16:40, Break and Panel Discussion of Speakers in the Afternoon Session.


          16:40 -- 17:20, Video Understanding In the Wild with Incomplete Supervision.

              Speaker: Anurag Arnab. 

              Host: Li Zhang.

          17:20 -- 18:20, Learning with few labeled data.

              Speaker: Tao Xiang. 

              Host: Yanwei Fu.

          18:20 -- 18:40, Panel Discussion and Finish.


          Speakers

          圖片

          Anurag Arnab
          Google

          圖片
          Shangzhe Wu
          Univ. of Oxford

          圖片
          Weidi Xie
          Univ. of Oxford

          圖片
          Yi Zhu
          Amazon AI

          圖片
          Timothy Hospedales
          Univ. of Edinburgh

          圖片
          Yuxiong Wang
          UIUC

          圖片
          Songcan Chen
          NUAA

          圖片
          Zhiwu Lu
          Renmin Univ.

          圖片
          Li Zhang
          Fudan Univ.

          圖片
          Tao Xiang
          Univ. of Surrey

          Host

          圖片
          Xiangyang Xue
          Fudan Univ.

          圖片
          Yanwei Fu
          Fudan Univ.

          圖片
          Li Zhang
          Fudan Univ.

            

          For more details, please check the seminar website:

          http://www.sdspeople.fudan.edu.cn/fuyanwei/VI_seminar/fudan-vi-seminar.github.io/index.html

          国产精品videossex久久
          <p id="lvxrx"></p>

          <address id="lvxrx"></address>

            <noframes id="lvxrx"><listing id="lvxrx"><nobr id="lvxrx"></nobr></listing>
              <address id="lvxrx"></address>
                  <address id="lvxrx"></address>

                    <noframes id="lvxrx"><form id="lvxrx"></form>

                  <address id="lvxrx"><listing id="lvxrx"><meter id="lvxrx"></meter></listing></address>